
Most of the components used
in building Delphi applica-

tions can be clearly seen on the
Component Palette and manipu-
lated with the Object Inspector at
design time. A click on the palette
and a click on the form, and any
component on the palette is ready
for use. However, the most impor-
tant component to any Delphi ap-
plication is not on the Component
Palette, nor will its properties be
found in the Object Inspector.
TApplication is the foundation for
all Delphi VCL based projects. It
contains the lowest level of code
needed to run a Windows applica-
tion, creating the ever-patient
message loop and handling all the
low level calls to the Windows API
that create and run an application.
Like a Secret Service agent,
TApplication is there, not quite
noticed, but very capable and
ready to serve.

Strangely enough, TApplication
is actually a component, descend-
ing directly from TComponent.
TApplication itself is declared in
the Forms unit of the runtime lib-
rary. The instance of TApplication
that is declared for all Delphi
projects, Application, is actually a
Window, created directly with a
call to the API CreateWindow. It is
intialized with zero height and zero
width, so it never actually appears
on the screen. Application knows
how to create and manage the main
form of a Delphi project at run-
time. TApplication has properties
and events just like any other
component. The best part is that a
number of these events and prop-
erties contain valuable information
for the Delphi programmer. That
information is not readily
apparent, but easily surfaced.

Application.ProcessMessages
Frequently, an application will
have to perform a task that takes a
rather large chunk of processor
time. Often, this involves some
sort of loop. Because Windows 3.x

Inside TApplication
by Nick Hodges

multi-tasks cooperatively, a well-
behaved Windows application has
to allow other applications a shot
at processing their messages.
Application provides a simple way
to allow messages to be processed
while a project is busy doing some
other menial task. A call to
Application.ProcessMessages any-
where in your code will ensure that
your application will give other
Windows programs space to do
their thing. Periodic calls inside a
loop will allow all applications to
process messages that would
otherwise be bottled up.

The sample application
(included on the disk and shown in
action over the page) demon-
strates how this works. When the
Waste Time check box is selected,
the demo continuously counts up
and down from 0 to 100 and
displays the status in a gauge (see
Listing 1). The repeat...until loop
would normally seize control of the
Windows environment, not allow-
ing any other applications access
to the message queue. However, a
simple call to Application.
ProcessMessages in the middle of
the loop causes the demo to peek
into the message queue and proc-
ess any messages waiting there. As
a result, Windows can function
normally despite a loop running
continuously in the background.

However, note that Application.
ProcessMessages will not close an
application when the wm_quit
message is encountered inside a
loop. Therefore, the loop itself

includes a check Application.
Terminated. This ensures that
Application.ProcessMessages actu-
ally processes all the waiting mes-
sages for the application before
terminating the application.
Application.ProcessMessages actu-
ally sets Terminated to true, but the
programmer must explicitly check
for it to allow it to be processed. To
see this work, try commenting out
the call in the until clause, run the
program and notice that the
program won’t close until the
Waste Time check box is
deselected.

You can call Application.
ProcessMessages anywhere at any
time, but it is best used when any
action a program takes might inter-
fere with the free flow of Windows
messages. Interestingly, the code
is the same as that invoked by
TApplication when it sets up the
message loop and waits for user
input in any Delphi program.

Starting Out Minimized
Employing a zero-sized window to
run a Delphi application and to
manage all of its associated forms
causes the application to behave
slightly differently to what might
normally be expected.

Despite how it may appear to a
developer within Delphi itself, the
real main window of any Delphi
application is the TApplication win-
dow itself. It is this window which
is displayed when the application
is minimized and it is this window
which is queried by Windows

procedure TForm1.CheckBox3Click(Sender: TObject);
var Increment: Integer;
begin
 Increment := 1;
 repeat {Waste time, but allow processing of Windows messages}
 Gauge1.Progress := Gauge1.Progress + Increment;
 if Gauge1.Progress = Gauge1.MaxValue then Increment := -1;
 if Gauge1.Progress = Gauge1.MinValue then Increment := 1;
 Application.ProcessMessages;
 until (not CheckBox3.Checked) or (Application.Terminated);
 Gauge1.Progress := 0;
end;

➤ Listing 1

8 The Delphi Magazine Issue 4

shells such as Program Manager
when seeking an icon.

One of the easiest ways to show
this slightly unusual trait is to
create a simple Delphi application,
install it in a group in Program
Manager and then tell Program
Manager to run the application
minimized. The Delphi-built appli-
cation will ignore the command
when run from Program Manager.
Since Application is really the main
form of the application, and it
creates and displays what the
developer calls the main window of
the application, the message never
gets to the application to start in a
minimized state. TApplication
doesn’t process the CmdShow
parameter which defines how the
program will be displayed on
startup.

Fortunately, there is an easy fix
to this seemingly anomalous
behavior. The demo application, if
started with the Run Minimized
command set in Program Manager,
will behave as expected. In the
main form of the demo program,
the FormCreate method checks the
CmdShow value that was passed to
TApplication and stored in the
CmdShow variable in the System unit
(see Listing 2). The FormCreate
constructor checks the value and
sets the WindowState accordingly. A
call to the ShowWindow API would do
the same thing, but wouldn’t neces-
sarily set the proper WindowState
value for the main form.

Icon And Icon Caption
Some developers may notice that
the once the application is prop-
erly minimized when called from
Program Manager, the icon that is
displayed in Program Manager is
not the one attached to the main
form’s Icon property.

This is another symptom of the
distinction between TApplication
and the main form. The icon that is
bound into the executable and
found by Program Manager is the
icon attached to the application
itself. This icon can be set through
Delphi’s IDE on the Options|
Project|Application page. You can
also change the application’s main
icon at runtime with a simple
assignment statement.

The solution to this dilemma is
to do one of two things: either en-
sure that the TApplication icon and
the main form icon are the same, or
leave the Icon property of the main
form blank and let TApplication do
all the icon management.

It is also easy to assume that the
main form’s caption will become
the caption for the icon, but such
is not the case. The Title property
of TApplication holds a string that
will be displayed as the minimized
application’s caption. The default
can be set in the project’s Option
dialog, and can be easily changed
at run-time.

The ever-present demo demon-
strates the use of icons and their
captions. Note that if placed in
Program Manager, the demo will
display the Delphi default icon.
When run and minimized, that
same icon will be displayed.

However, TApplication has an Icon
property that can be set at design
time. The demo allows you to do
that – see Listing 3. Assigning an
Icon to the main form’s Icon prop-
erty at design time would cause
that icon to be displayed on mini-
mization, but not as the icon repre-
senting the application in Program
Manager. Note, too, that the icon
assigned at runtime is only tempo-
rary, and that the icon assigned to
TApplication at design time is the
one bound into the program at
compile time as its main icon.

Finally, the caption can be easily
changed by entering a string into
the supplied edit box. That string
is then assigned to Application.
Title.

Dragged Files
The fact that the icon shown on
minimization is not the icon

➤ The example program in action

procedure TForm1.FormCreate(Sender: TObject);
begin
 {Ensure Window opens itself in state set by CmdShow}
 case CmdShow of
 sw_ShowMinimized,
 sw_ShowMinNoActive : WindowState := wsMinimized;
 sw_ShowMaximized : WindowState := wsMaximized
 else
 WindowState := wsNormal
 end; { case }
 { ... more code here, see files on the disk ... }
end;

➤ Listing 2

10 The Delphi Magazine Issue 4

representing the project’s main
form brings about more unusual,
but fixable, behavior in Delphi
applications. Because the icon
displayed when the program is
minimized is owned by the applica-
tion and not by the main form,
dragging files from File Manager to
the iconized application does not
function as expected. You can
cause an application’s main form to
accept dragged files as usual by
calling the DragAcceptFiles API and
responding to the wm_DropFiles
message to gather information
about those files. Once this is done,
Delphi applications that are in the
restored state will accept these
files gladly; however, when
minimized they will not.

TApplication has to be set up to
accept files as well. TApplication
has an event called OnMessage that
is invoked every time a message is
received by the application. By
calling DragAcceptFiles and pass-
ing Application.Handle, and by
writing a special handler to catch
the wm_dropfiles message inside
the OnMessage, a minimized applica-
tion can respond to files dragged to
it in exactly the same way as does
a restored program. Note that the
OnMessage event could be used to
trap any Windows message that
might need special handling by the
Application instance, such as
wm_paint for painting on the icon.

The demo application illustrates
how a Delphi application can be set

up to accept files in any state. Both
TApplication and the program’s
main form are able to accept
dragged files, and both respond to
the wm_dropfiles message by
gathering the names of all the
dragged files in a TStringList and
then placing that list into a listbox
on the form.

Hints
Windows applications these days
aren’t considered complete
without fly-by help boxes for but-
tons, tool bars and other compo-
nents. Delphi makes it incredibly
easy to supply these little hint
boxes. The TApplication object
makes it very easy to customize
them. TApplication supplies prop-
erties to change the time a user
waits to see the hints, whether the
hints are displayed at all, and even
the background color of the hints
themselves, in case a programmer
wants to be different and not
display hints with the standard
yellow background.

These features can be easily
seen in the demo application. The
hints can be turned on and off using
the so-named check box. The hint
delay time, in milliseconds, can be
set using the spin edit box. Note
that the delay is set only for the
first hint, once the first hint is
shown all hints after that are imme-
diately displayed without delay.
This allows users to see all the
hints without having to wait for the

delay for each control. Moving the
mouse off the main window resets
the delay. The background color of
the hints can be changed with a
simple call to a ColorDialog box.
The selected color is then set to the
TApplication HintColor property.

Stay-On-Top
Some Delphi developers may want
to create an application that
always remains on top of all the
other windows on the screen.

Interestingly, fsStayOnTop is the
only FormStyle property setting
that can be changed at runtime.
However, when in this state, prob-
lems can arise when the applica-
tion tries to call another dialog.
Dialogs called by programs in stay-
on-top mode can end up behind the
calling window. If such a dialog is
modal, it can lock up Windows
entirely! TApplication allows you to
place dialogs on top of forms that
have fsStayOnTop set. The two
methods NormalizeTopMosts and
RestoreTopMosts allow a program-
mer to toggle in and out of a state
that allows dialogs to be place on
top of a stay-on-top application
(see Listing 4).

The trusty demo application can
be switched to stay-on-top mode
and then can calls a message box
which is displayed on top of the
form. Without the calls altering the
topmost state, the message box
would be placed behind the app
and out of reach, causing Windows
to become modal with no escape.
Even worse, users wouldn’t even
know what had happened! To dem-
onstrate this, try setting the stay
on top checkbox and then try to
change the hint color!

Listing Components
Frequently, a Delphi developer
may wish to gain access to a
particular type of control or a cer-
tain set of controls on a form at run
time. TApplication contains a list of
all the components owned by the
main form in its Components prop-
erty. ComponentCount contains the
total number of controls in the
array. By using run-time typing in-
formation and a for loop, a pro-
grammer can cycle through all of
the main form’s components and

procedure TForm1.Button1Click(Sender: TObject);
var Icon: TIcon;
begin
 {Get an icon and load it into the Application. The new icon will now
 show up when the application is minimized}
 Icon := TIcon.Create;
 if OpenDialog1.Execute then begin
 Icon.LoadFromFile(OpenDialog1.Filename);
 Application.Icon := Icon;
 end;
 Icon.Free;
end;

➤ Listing 3

procedure TForm1.Button5Click(Sender: TObject);
begin
 Application.NormalizeTopMosts; {Allow dialogs on top}
 MessageBox(Form1.Handle, ’This should be on top.’, ’Message Box’, MB_OK);
 Application.RestoreTopMosts; {Return to normal}
end;

➤ Listing 4

November 1995 The Delphi Magazine 11

find components that are of a
certain type or that have certain
properties. The demo shows this
by gathering all of the names of the
components on a form and putting
them in a list box (see Listing 5). It
also picks out all the TLabel
controls and alternates their font
color between red and black. You
can use this technique to find any
specific control or type of control.

The Command Line
TApplication also stores details at
run time about the command line
used to run itself. The EXEName prop-
erty stores the full path of the ex-
ecutable, which can be broken
down using functions from
SysUtils, such as ExtractFilePath
and ExtractFileName. The demo
displays its command line in a label
upon execution.

Conclusion
TApplication can perform a
number of other tricks, including
restoring and minimizing itself as
well as making it easy for to invoke
a program’s help file. Despite being
hidden away, TApplication has a
wealth of capabilities. Knowing a
few tricks we can take advantage of
the strengths of TApplication and
overcome its few quirks.

Nick Hodges, an experienced
Delphi and Pascal developer, is
known to many as the author of
TSmiley and the inspiration
behind a whole raft of Smiley-
Ware! He can be contacted via
CompuServe on 71563,2250

procedure TForm1.Button2Click(Sender: TObject);
var I: Integer;
begin
 ListBox2.Clear;
 for I := 0 to ComponentCount - 1 do begin
 Listbox2.Items.Add(Components[I].Name);
 if Components[I] is TLabel then begin
 {Use Run-time typing to check type. Toggle the text of only TLabels
 between Red and Black. Note that each component must be typecast
 first.}
 if TLabel(Components[I]).Font.Color = clBlack then
 TLabel(Components[I]).Font.Color := clRed
 else
 TLabel(Components[I]).Font.Color := clBlack;
 end
 end;
 Label7.Caption := IntToStr(ComponentCount);
end;

➤ Listing 5

Several readers responded to the query in Issue 3’s Delphi Clinic about
how to make an iconised Delphi application stay on top of all other
windows – thanks! Here Hallvard Vassbotn provides a usefully gener-
alised solution, as well as revealing other useful facets of TApplication.

Icon On Top
For a Delphi application, even if the
main form’s FormStyle property is
set to fsStayOnTop, the icon which
shows when minimized is not on
top of the other windows. The rea-
son for this is that the Application
object maintains a hidden window
that is the actual main window of
the application. This hidden
window will distribute commands
to what Delphi considers the main
form as it sees fit. When the Delphi
main form is minimized, it will
actually be hidden and the
Application window is responsible
for drawing the main form’s icon.

With that in mind, and remem-
bering that the Application
window’s handle can be accessed
with it’s Handle property, we can
solve the problem using the code
in Listing 6.

We simply hook the OnMinimize
event of the Application object.
Whenever the application is mini-
mized, and thus the icon is showed,
the code in AppMinimize will be run.
Here we check if the FormStyle
property of the main form indi-
cates that the icon should be made
on top. If so we use the WinProcs
routine called SetWindowPos to
change the display attributes of the
icon.

Tile And Cascade
You might have noticed that when
running an application created

with Delphi it doesn’t respond
properly to the Tile and Cascade
commands from the Task Manager.
Delphi itself has this behaviour (it
was, after all, written in Delphi!).

You can test this by running a
Delphi app together with one or
more non-Delphi apps. Bring up the
Task Manager by double-clicking
on the background or pressing
Ctrl+Esc. Click the Tile and
Cascade buttons. All non-Delphi
applications are resized and posi-
tioned correctly. The Delphi app
doesn’t move, but instead an
empty square is left where the
window should have been placed.

This is another effect of the fact
that the Application object in
Delphi maintains its own hidden
window which is the actual main
window in Windows terms. The
blank space you see when tiling is
actually this hidden window.

To overcome this problem, we
can use a little known feature of the
Application object, the method
HookMainWindow, which lets us hook
into the message handler of the
Application window. This way we
can monitor and override any
functionality of the main window.

By using the WinSight utility
provided with Delphi, I found that
monitoring WM_WindowPosChanging
messages sent by Windows to the
Application window would let me
resize the main form correctly
when tiling and cascading. The
solution is shown in Listing 7.

First we hook the message
handler of the application window
with the HookMainWindow method.
Note that Application keeps track
of a list of hooks, so that there
might be several hooks installed at
once. When the main form is
destroyed we act politely and clean
up after ourselves by calling
UnHookMainWindow.

The HookProc method will now be
called for every message that
arrives in the Application window’s
message queue. We are only
interested in monitoring the
messages, not overriding the

12 The Delphi Magazine Issue 4

unit Unit1;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;
type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 private { Private declarations }
 procedure AppMinimize(Sender: TObject);
 public { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnMinimize := AppMinimize;
end;

procedure TForm1.AppMinimize(Sender: TObject);
begin
 if FormStyle = fsStayOnTop then
 SetWindowPos(Application.Handle, HWnd_TopMost, 0, 0, 0, 0,
 SWP_NoActivate or SWP_NoSize or SWP_NoMove);
end;
end.

➤ Listing 6

unit Unit2;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;
type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private { Private declarations }
 function HookProc(var Message: TMessage): boolean;
 public { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.HookMainWindow(HookProc);
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 Application.UnHookMainWindow(HookProc);
end;

function TForm1.HookProc(var Message: TMessage): boolean;
var
 LocalFlags: word;
begin
 Result := false;
 if Message.Msg = WM_WindowPosChanging then begin
 with TWMWindowPosMsg(Message).WindowPos^ do begin
 if (hWnd = Application.Handle)
 and not IsIconic(hWnd)
 and (cx > 0) and (cy > 0) then begin
 LocalFlags := flags or SWP_NoZOrder;
 if BorderStyle = bsSizeable then
 LocalFlags := LocalFlags and not SWP_NoSize
 else
 LocalFlags := LocalFlags or SWP_NoSize;
 SetWindowPos(Self.Handle, 0, x, y, cx, cy, LocalFlags);
 end;
 end;
 end;
end;
end.

➤ Listing 7

default behaviour, so we always
return false.

If it is a WM_WindowPosChanging
message, we are interested in it and
type-cast the message record to
the TWMWindowPosMsg defined in
Messages. The WindowPos field is a
pointer to a record that contains all
the useful information, so we
de-reference this pointer as well.
Now to be on the safe side we check
that the message was indeed
intended for the Application win-
dow, that we are not an icon and
that the size of the window is not
zero.

If all is well so far, we know that
we should resize the main form. To
keep things unobstructed, we
fiddle with the flag bits to make
sure that the Z-order is not affected
and that the size of a fixed-size
window isn’t changed.

Now Tile and Cascade from the
Task Manager should work the way
they are supposed to do. This code
example also shows how to
monitor and/or override the appli-
cation window’s behaviour – again
demonstrating Delphi’s power and
extensibility!

Hallvard Vassbotn lives and works
in Norway and can be reached by
email at hallvard@falcon.no

November 1995 The Delphi Magazine 13

	Application Process Messages
	Starting Out Minimized
	Icon And Icon Caption
	Dragged Files
	Hints
	Stay-on-Top
	Listing Components
	The Command Line
	Conclusion

